Balloons and Gas Laws

Thomas L. Morton October 20, 2004

Introduction

What will happen to our balloon?

- It will rise
- It will expand while rising
- It will pop, and fall back to earth
- We will talk about the physics of each of these steps.

Topics of Discussion

- How do gases behave?
- Why does a helium balloon rise?
 - u What is helium?
 - Why does the balloon expand?
- How much can it lift?
- How fast does it go up?
- How far does it go up?

How do gases behave?

- Boyle's Law PV = const
- Charles' Law V = const x T
 - Avogadro's Law Equal volumes at the same temperature and pressure have the same number of molecules. $V = n V_{standard}$

Boyle's Law

Glenn Research Center

For a given mass, at constant temperature, the pressure times the volume is a constant.

$$pV = C$$

Charles and Gay-Lussac's Law

Glenn Research Center

For a given mass, at constant pressure, the volume is directly proportional to the temperature

$$V = C T$$

What is the Temperature?

- Volume doesn't go to zero at 0° Celsius
- Volume does go to zero at -273° Celsius
- -273 is defined as Absolute Zero
- We use a Temperature scale called Kelvin
- ° Celsius + 273 = ° Kelvin

How do gases behave?

- Boyle's Law PV = const
- Charles' Law V = const x T
- Avogadro's Law $-V = n V_{standard}$
- Net result PV / nT = R
- R is the gas constant
 - $_{\rm u} R = 8.314 \, \text{J} / \text{K} \, \text{mol}$
 - u R = 1.987 cal / K mol
 - $_{\rm u}$ R = .08205 liter atm / K mol

What is n?

- In a typical liter of air, there are about 2.7x10²² molecules.
 - Scientists use a different counting scale.
 - A gram equivalent of a chemical is called a mole.
 - 1 mole = 6.02×10^{23} molecules/atoms

The Periodic Table of Elements

Last revised on June 22, 2004

Last revised on June 22, 2004

Ideal Gas Law

- Finally, we have PV = nRT
 - u P in atmospheres
 - u V in liters
 - u n in moles
 - u T in kelvins
 - u R = 0.08205 liter atm / K mol
- Valid for moderate temperatures and pressures.
- OK for conditions we will see

Why do Helium balloons float?

Why do boats float?

Why do Helium balloons float?

- Helium balloons "float" in a sea of air.
 - S Helium weighs less than air.
 - S Displaces more dense air where balloon is.
 - Air is 78% Nitrogen, 21% Oxygen, and 1% Argon
- Molecular weight of air is
 - 0.78*28+0.21*32+.01*40 = 28.96 g/mol
- "Molecular" weight of Helium is 4 g/mol

Let's use the ideal gas law

- Suppose I have a balloon one foot in diameter
- Volume = $4\pi r^3/3 = 4\pi (15.24 \text{ cm})^3 / 3 = 14.800 \text{cm}^3 = 14.8 \text{ liters}.$
 - Weight of that air is: 14.8/(.08205*298)*28.96=17.5 gm
- Weight of helium is:
 - 14.8/(.08205*298)*4 = 2.4 gm
- Lift is 17.5 2.4 = 15.1 gm.
- Rises if balloon weight is less than 15.1 gm

What is the relevance to balloons?

- Tube demonstration
- Measure pressure in different sized balloons
 - Recover balloon from freezer
 - Lift equation is a little different
 - u Use P_{internal} for the weight of balloon and Helium
 - u Lift is a little less than previous slide

What happens as balloon rises?

- Pressure drops
- Temperature drops, then stays steady
- Consider balloon from a couple slides ago, at 10,000 feet high
 - u P = 700 mBar = .69 atmospheres
 - $_{\rm u} T = 0^{\rm o} C = 273 \text{ kelvins}$
 - u n = .61 moles
 - $_{\rm u}$ V = nRT / P = 19.6 liters
 - u R = $3\sqrt{3}$ *V/(4 π) = 16.7 cm > 15.2 cm

What happens as balloon rises? (2)

Consider the same balloon, now at 50,000 feet

$$_{\rm u}$$
 P = 120 mBar = .12 atmospheres

$$_{\rm u}$$
 T = -60° C = 213 kelvins

$$_{\rm u}$$
 n = .61 moles

$$_{\rm u}$$
 V = nRT / P = 88.2 liters

u R =
$$3\sqrt{3*V/(4\pi)}$$
 = 27.6 cm ≈ 2x15.2 cm

What happens as balloon rises? (3)

Consider the same balloon, now at 100,000 feet

$$_{\rm u}$$
 P = 10 mBar = .01 atmospheres

$$_{\rm u}$$
 T = -50° C = 223 kelvins

$$u n = .61 \text{ moles}$$

$$_{\rm u}$$
 V = nRT / P = 1160 liters

u R =
$$3\sqrt{3*V/(4\pi)}$$
 = 65.1 cm ≈ 4x15.2 cm

- Balloon stretched to 18 x original surface area
- u Balloon thickness starts at .28 mm, goes to .015 mm

Activities

- Measure balloon size, lift, and rise rate:
 - u Use string to measure radii.
 - u Use scale to measure weight of balloon, and lift.
 - Use stopwatch to measure time to rise from floor to ceiling.
- Use vacuum tank to measure balloon size as a function of pressure.